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LETTER TO THE EDITOR 

The scattering of two Yang-Mills plane waves 
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TUBITAK Research Institute for Basic Sciences, PO Box 74 Gebze, Kocaeli, Turkey, 
and Mathematics Department, Bosphorus University, Istanbul, Turkey 

Received 6 July 1983 

Abstract. We consider the head-on collision of two sandwich plane waves in non-abelian 
gauge theory. A classical solution of the Yang-Mills field equations is obtained describing 
the scattering of weak plane waves. We show that after the collision the gauge field 
acquires a new inductive aspect due to the nonlinear interaction between these waves. 

Maxwell's electrodynamics predicts that light will simply pass through light without 
effect. On the other hand in general relativity space-time acquires mass and angular 
momentum aspects through the scattering of two gravitational waves. Furthermore 
the focusing of each gravitational plane wave by the gravitational field of the other 
one eventually brings about a space-time singularity (Penrose 1965, Szekeres 1970, 
1971, Khan and Penrose 1971, Nutku and Halil1977). It will be of interest to consider 
the scattering of two plane waves in classical Yang-Mills theory where in the abelian 
limit there will evidently be no interaction between the waves, but in general we can 
expect the non-abelian character of the field to reproduce some results of general 
relativity. Hence we shall now obtain the reduced field equations and formulate the 
boundary conditions appropriate to the problem of colliding Yang-Mills plane waves. 

Plane wave solutions of non-abelian gauge fields were first obtained by Coleman 
(1977). He showed that the one-form 

A = [ f ( u ) x  + g ( U ) Y  +h(U)ldu (1) 
is a solution of the Yang-Mills field equations where f ,  g and h are Lie algebra valued 
arbitrary functions of the retarded time coordinate U .  For definiteness we shall choose 
the gauge group to be SU(2) and boldface letters will denote isovectors. Trautman 
(1980) has pointed out that if f ,  g and h belong to an abelian Lie algebra, then 
translations in the x y  plane are symmetries. 

We shall start by considering a specialisation of equation (1) to a sandwich plane 
wave. Let us refer to figure 1 which depicts Minkowski space divided into four regions. 
In regions I, I1 and I11 there will be sandwich plane waves travelling in positive and 
negative z directions respectively, while their interaction will take place in region IV. 
The potential one-form will vanish in region I 

A'=O (2) 
and henceforth Roman numeral superscripts will refer to the various regions. The 
sandwich wave travelling in (say) the + z  direction will start with a shock at U = u 1  to 
be followed by an equal and opposite shock at U = u2 where u 1  and u2 are arbitrary 
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Figure 1. Regions of Minkowski space which are used in formulating the colliding waves 
problem. Each point in the diagram represents a plane. 

constants satisfying u 1  < u 2 .  This situation is described by the potential one-form 

A"= ~ n o s P ( u )  dx, (3) 
~ P ( u ) = ( u ~ - u ~ ) - ~ [ ( u  - u l ) 8 ( u  - u + ( u  - u 2 ) 8 ( u  - u 2 ) ] ,  (4) 

where 8 is the Heaviside unit step function, no is a constant isovector and E is a 
constant parameter which can be regarded as the amplitude of the wave. The 
expression for &(U) could have been smoothed out by choosing suitable functions, 
but the use of distributions simplifies the problem and henceforth we shall assume 
the Yang-Mills field equations to hold in the sense of distributions. Equations (2)-(4) 
describe a sandwich wave since the field constructed from these expressions vanishes 
for U < U and U > u 2 .  In  particular, the limit u 2  + U yields an impulsive wave (Penrose 
1972), that is, the field two-form F becomes 

where S denotes the Dirac delta function. These sandwich plane waves form a subclass 
of the non-abelian waves. They are plane abelian waves pointing in a fixed direction 
in isospin space. Equation (3) is obtained from equation (1) for the choice g = h = 0 
together with a gauge transformation which enables us to eliminate the undesirable 
dependence of the potential on the ignorable coordinates x and y defined along planes 
of symmetry. A similar specialisation of equation (1) will describe a sandwich plane 
wave travelling in the negative z direction 

where U is the advanced time coordinate, mo is a constant isovector and q is another 
parameter standing for the amplitude of the wave. 

The sLattering of these two sandwich plane waves will be formulated as a charac- 
teristic initial value problem for the Yang-Mills field equations with Cauchy data 
specified on a pair of intersecting null surfaces. Thus we shall ask for a solution of 
the field equations in region IV such that on U = U and v = U the potentials are given 
by (3) and (6). The junction conditions across the various regions will be the same 
as those in Maxwell's theory. A suitable ansatz for the potential one-form in the 
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interaction region is 

A'" = n (U, v ) dx + m (U, t, ) dy (7) 

which is suggested by (3) and (6). We note here that the transformation of the potential 
into the form of (3) in region I1 was an essential simplification without which both 
waves could not have been represented by this ansatz. The field two-form constructed 
from (7) is given by 

F ' V = n , d u r , d x + n , d v A d x + m , d u A d y + m , d v ~ d y + n x m  dx Ady (8) 
where here and in the following subscripts denote partial derivatives. Then, the 
Yang-Mills field equations 

d*F + A  A * F  = 0, (9) 

where A denotes both wedge product of forms and cross product in isospin space, 
reduce to 

n x n , + m x m , = O ,  n x n , + m x m , = O ,  ( loa ,  b )  

(10C) 2 n , , = m x ( n x m ) = n l m l  - m ( m  .n), 

( 1 0 4  2 m , , = n x ( m  x n ) = m l n l  -n(n . m ) .  

In order to generalise these equations to another gauge group the cross product must 
be understood as (n X m)' = Cilkn'm where C,', are the structure constants. 

Equations (10) possess an invariance property which can be used to simplify them 
without loss of generality. Namely, a rotation on the xy plane can be compensated 
by a rotation of n and m in isospin space so that (7) remains invariant. We can verify 
that equations (10) are indeed invariant under the transformation 

(1 1) 
and therefore given any two vectors n, m we can always make them orthogonal to 
each other 

2 

2 

n + n  cosa - m  sina,  m + n  s ina  + m  cosa,  

n * m  = O  (12) 
provided that they were not parallel to start with. These vectors will be parallel only 
for an abelian gauge field which is equivalent to a Maxwell field. In Maxwell's theory 
proper, only two scalar functions n, m will survive and they will satisfy 

nu" = 0, mu, = 0, (13) 
in place of equations (10). These equations have the familiar solution that in the 
interaction region waves travelling in the positive and negative z directions will add 
without interference from each other. Thus for the interesting case of non-abelian 
gauge field we can always require that n, m in (7) satisfy (12) which simplifies (1Oc) 
and (10d). Further, ( loa ,  6 )  can be satisfied by the choices 

n = n o n ,  m =mom,  (14) 
where no,  mo are constant orthogonal vectors and n, m are scalar functions of U, U. 
These specialisations are also consistent with the boundary conditions since the limiting 
forms of the potential in regions I1 and I11 can be obtained from (7) and (14). The 
Yang-Mills field equations now reduce to the pair 

(15) 
2 2 2n,, = m n, 2m,,  = n m, 
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and it is not possible to obtain a simpler expression of the field equations without 
introducing ad hoc restrictions. Finally, (15) can be derived from a variational principle 
with the Lagrangian density 

Y= 2n,n, +2m,m, + n 2 m 2  (16) 

which is an interesting two-dimensional model field theory. 
There exists a solution of this system of equations which satisfies the required 

boundary conditions. We have not been able to find the exact solution and had to 
be content with an approximate solution where 

E << 1, 77 << 1, (17) 
and the colliding waves are initially weak waves. This solution can be written in the 
form 
n = E ~ P ( U ) - - ~ ~ ~ ’ B ( ( ~ ) ~ ( U ) + .  . . , (18) 

where in addition to d ( u )  given by (4) we have defined 

m = 7 7 a ( v ) - - 7 7 ~ ’ ~ ( ~ ) ~ ( u ) + .  . . , 

B ( U ) = ( U ~ - U J ’ [ ( U  - U , ) % ( U  - u ~ ) - ( u  -u2)’e(u-UZ)], 

%?(U) = (U2 - Ui)-’{[U’ -i- (U1 - 3 U 2 ) U  - ( 2 U i  - 3 U z ) U i ] ( U  - U i ) @ ( U  - U i )  

- (U - u2l3e (u  - u~)}. (19) 

In the above expressions we have grouped the terms in such a way that the satisfaction 
of equations (15) throughout Minkowski space is manifest. Higher-order terms can 
be calculated in a straightforward manner. 

In this solution we can recognise an important property of colliding plane waves 
in non-abelian gauge theory. The interaction between the plane waves results in only 
a slight modification of the wavefronts which pass through each other and continue 
on. But the nonlinearity of this interaction gives rise to a new phenomenon which is 
similar to the situation in general relativity. Namely, initially the gauge field consisted 
only of radiative parts but after the collision it acquires a new inductive aspect as 
well. Using (18) and (19) in (8) we find that the field two-form has radiative aspects 
corresponding to retarded and advanced waves, but in addition it also carries an 
inductive aspect which is given by the last term in (8). At the lowest order the inductive 
term grows monotonically with increasing U and U ;  however, we need the exact 
solution in order to find out whether or not it dies off long after the collision has 
taken place. 

I thank M Gurses and R Guven for helpful conversations and Professor E Inonii 
for his kind interest in this problem. This work was in part supported by the Turkish 
Scientific Research Council TUBITAK. 
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